List of contents

2 Safety
- 2.1 Observing instructions ... 4
- 2.2 Warning signs and explanation of symbols 4
- 2.3 Avoid danger ... 4
- 2.4 Intended use .. 4
- 2.5 Instructions for working safely 4

3 Product description
- 3.1 Design and components of the solar system 6
- 3.2 Brief description .. 7
- 3.3 System components ... 7
- 3.3.1 Control and pump unit for solar systems EKSRPS4 7
- 3.3.2 Filling and draining cock (KFE BA) for EKSRPS4. 8
- 3.3.3 Regulating valve FlowGuard FLG 8
- 3.3.4 Storage tank extension kit CON SX 8
- 3.3.5 Storage tank extension kit 2 CON SXE 8

4 Installation
- 4.1 System concepts .. 9
- 4.1.1 Parallel connection ... 9
- 4.1.2 Serial connection .. 9
- 4.2 Installing the control and pump unit 9
- 4.2.1 Installation pump unit .. 10
- 4.2.2 Installing FlowSensor, FlowGuard (optional) 11
- 4.2.3 Setting and resetting parameters 29
- 4.2.4 Password input ... 29
- 4.2.5 Language selection ... 29
- 4.2.6 Manual operation ... 23
- 4.2.7 FlowSensor ... 23
- 4.2.8 Manual operation ... 23
- 4.2.9 Display during start-up 26
- 4.2.10 Display during operation 27
- 4.2.11 Display during operation 27
- 4.2.12 Booster function for high solar panel temperatures 22
- 4.2.13 Setting recommendation for the post-heating via external heat sources or by the electrical immersion heater, burner blocking contact 33
- 4.2.14 Setting the mounting position of the solar panel 33
- 4.2.15 Correcting values for measuring points 30
- 4.2.16 Manual setting of the pump speed regulation 30
- 4.2.17 Burner inhibit contact 30

5 Start-up and decommissioning
- 5.1 Start-up ... 18
- 5.2 Decommissioning .. 19
- 5.2.1 Temporary shutdown ... 19
- 5.2.2 Final shutdown ... 20

6 Control unit
- 6.1 Operating and display components 21
- 6.2 Operating mode of control system 21
- 6.2.1 Pump operation ... 21
- 6.2.2 Booster function for high solar panel temperatures 22
- 6.2.3 Start optimisation .. 22
- 6.2.4 Switch-on block functions 22
- 6.2.5 Pump kick function ... 22
- 6.2.6 Manual operation ... 23
- 6.2.7 FlowSensor ... 23
- 6.2.8 Output calculation, maximum values, and yield count 23
- 6.2.9 Speed regulation of the solar operating pump PS 24
- 6.2.10 Total Reset Function .. 24
- 6.2.11 Setting recommendation for the post-heating via external heat sources or by the electrical immersion heater, burner blocking contact 33
- 6.2.12 Leak protection function 25
- 6.3 Adjustment and menu guide 25
- 6.3.1 Display during start-up 26
- 6.3.2 Display during operation 27
- 6.3.3 Setup menu .. 27
- 6.3.4 Password input ... 29
- 6.3.5 Language selection ... 29
- 6.3.6 Setting and resetting parameters 29
- 6.3.7 Setting the mounting position of the solar panel temperature sensor ... 29
- 6.3.8 Manual setting of the pump speed regulation 30
- 6.3.9 Correction values for measuring points 30
- 6.3.10 Burner inhibit contact 30
- 6.4 Recommended settings .. 31
- 6.4.1 Standard parameter settings, recommended setting ranges 31
- 6.4.2 Additional settings for your solar system 32
- 6.4.3 Setting recommendation for the post-heating via external heat sources or by the electrical immersion heater, burner blocking contact 33
- 6.4.4 Tips for optimised user behaviour 33
- 6.4.5 Domestic water hygiene 33

7 Faults and malfunctions
- 7.1 Display of events ... 34
- 7.2 Troubleshooting .. 35

8 Hydraulic system connection
- 8.1 Schematics ... 37
- 8.2 Connection of a pressure solar panel system 39

9 Technical data
- 9.1 EKSRPS4 control and pump unit 40
- 9.2 Sensor characteristics .. 40
- 9.3 Connection allocation EKSRPS4 controller 41

10 Notes

11 List of keywords
2 Safety

2.1 Observing instructions

This manual is intended for authorised and trained technicians who have experience in the proper installation and commissioning of solar systems on account of their technical training and knowledge.

All necessary tasks for the installation, initial start-up, operation and setting of the system are described in this manual. For detailed information regarding the connected components of your heating system, please observe the respective documents.

Please read this manual carefully and thoroughly before proceeding with the installation and initial start-up or modification of the system.

Relevant documents

Documents listed below are part of the technical documentation of the Daikin solar system and therefore must be observed. The documents are included in the scope of supply of the individual components.

- Daikin EKSV21P, EKSV26P and EKSH26P solar high-efficiency flat solar panels: Installation instructions for on-roof, in-roof and flat-roof mounting
- Daikin Hot water storage tank (EKHWP or Altherma EHS(X/H)): Operating and installation instructions

When connecting to an external heat generator or storage tank which is not included in the scope of delivery, the individual associated operating and installation instructions apply.

2.2 Warning signs and explanation of symbols

Meaning of the warnings

Warnings in this manual are classified according into their severity and probability of occurrence.

DANGER!

 Draws attention to imminent danger.
 Disregarding this warning can lead to serious injury or death.

WARNING!

 Indicates a potentially dangerous situation.
 Disregarding this warning can result in serious injury or death.

CAUTION!

 Indicates a situation which may cause possible damage.
 Disregarding this warning can lead to damage to property and the environment.

This symbol identifies user tips and particularly useful information, but not warnings or hazards.

Special warning signs

Some types of danger are indicated by special warning signs.

Electric power

Danger of explosion

Risk of burning or scalding

Order number

Notes related to Order numbers are identified by the cart symbol.

Handling instructions

- Instructions on actions are shown as a list. Actions of which the sequential order must be maintained are numbered.
- Results of actions are identified with an arrow.

2.3 Avoid danger

Daikin solar installations are state-of-the-art and are built to meet all recognised technical requirements. However, improper use can lead to serious injuries or death, as well as causing material damage. Install and operate only Daikin solar systems to avoid danger:

- as stipulated and in perfect condition,
- with an awareness of the safety and hazards involved.

This assumes knowledge and use of the contents of this manual, the relevant accident prevention regulations and the recognised safety-related and occupational medical rules.

2.4 Intended use

The Daikin solar system may only be used for solar-supported heating of hot water systems. The Daikin solar system must be installed, connected and operated only according to the instructions in this manual.

The equipment is not intended for use in a potentially explosive atmosphere.

Any other use outside the intended use is considered as improper. The operator alone shall bear responsibility for any resulting damage.

Use as intended also involves compliance with maintenance and inspection conditions. Spare parts must at least satisfy the technical requirements defined by the manufacturer. This is the case, for example, with original spare parts.

2.5 Instructions for working safely

Working on the roof

- Installation work on the roof may only be carried out by authorised and trained persons (heating technicians, roofers, etc.) under observance of the relevant Accident Prevention Regulations.
- Material and tools must be secured against falling.
- Barriers must be erected to prevent persons from entering the area below the roof where the work is being carried out.

Before working on the heating system

- All work on the heating system (such as installation, connection and commissioning) may only be carried out by authorised and trained heating technicians.
Switch off the main switch and secure it against unintended switching on when carrying out any work on the heating system.

Electrical installation
- Electrical installation must be carried out only by qualified electrical experts and in compliance with the valid electro-technical guidelines as well as the regulations of the relevant energy supply company (EVU).
- For the mains connection, use a separate EN 60335-1 disconnector for all-pole disconnection from the power mains and a GFCI circuit breaker with a reaction time ≤ 0.2 s.
- Before completing the mains connection, compare the mains voltage, indicated on the type plate (230 V, 50 Hz) with the supply voltage.
- Before beginning work on live parts, disconnect them from the power supply (switch off main switch, remove fuse) and secure against unintentional restart.
- Equipment covers and service panels must be replaced as soon as the work is completed.

Instructing the user/owner
- Before you hand over the heating system, explain to the user/owner how to operate and check the heating system.
- Make a record of the handover by filling out and signing the installation and instruction forms jointly with the user/owner.
3 Product description

3.1 Design and components of the solar system

Fig. 3-1 Standard design of a Daikin solar system (Daikin recommends a double-sided connection)

Tab. 3-1 Legend for fig. 3-1

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cold water connection line</td>
</tr>
<tr>
<td>2</td>
<td>Domestic water (hot) distribution line</td>
</tr>
<tr>
<td>3</td>
<td>Stainless steel corrugated heat exchanger for domestic water (hot)</td>
</tr>
<tr>
<td>4a</td>
<td>Stainless steel corrugated heat exchanger for storage tank charging</td>
</tr>
<tr>
<td>4b</td>
<td>Stainless steel corrugated heat exchanger for storage tank charging and heating support</td>
</tr>
<tr>
<td>5</td>
<td>Submersion sleeve for storage, return temperature sensors</td>
</tr>
<tr>
<td>6</td>
<td>Fill level display</td>
</tr>
<tr>
<td>7</td>
<td>Filling and draining cock (KFE BA accessory)</td>
</tr>
<tr>
<td>8</td>
<td>Solar R4 controller</td>
</tr>
<tr>
<td>9</td>
<td>Solar return line (at the bottom on the solar panel)</td>
</tr>
<tr>
<td>10</td>
<td>Solar panel array</td>
</tr>
<tr>
<td>11</td>
<td>Solar flow line (at the top on the solar panel)</td>
</tr>
<tr>
<td>12</td>
<td>Thermal mixing valve (scalding protection, provided by customer)</td>
</tr>
<tr>
<td>13</td>
<td>Convection brake (accessory)</td>
</tr>
<tr>
<td>14</td>
<td>Solar flow layering pipe</td>
</tr>
<tr>
<td>15</td>
<td>Corrugated stainless steel heat exchanger for heating support</td>
</tr>
<tr>
<td>16</td>
<td>Thermal insulation sleeve for corrugated stainless steel heat exchanger for heating support</td>
</tr>
<tr>
<td>17</td>
<td>Solar return connection</td>
</tr>
<tr>
<td>18</td>
<td>Safety overflow connection</td>
</tr>
</tbody>
</table>

A Zone with water for domestic use
B Solar zone
FLS Solar FlowSensor (flow measurement)
P_S Solar operating pump
EKSRPS4 Control and pump unit for solar systems
\(t_{DHW}\) Storage temperature sensor
\(T_K\) Solar panel temperature sensor
\(T_R\) Solar return flow temperature sensor
\(T_S\) Solar storage tank temp. sensor
\(T_V\) Solar flow temperature sensor
EHS(X/H)B Solar tank with integrated interior heat pump device
HYC - DB Solar tank with integrated interior heat pump device
EKHWP energy storage
3.2 Brief description

The Daikin solar system is a thermal solar system for supplying hot water for consumption and solar support.

The Daikin EKSRPS4 Control and pump unit for solar systems can only be installed and operated as part of a Daikin Solar System (DrainBack) using the provided installation material.

The prerequisite for problem-free operation in the DrainBack system, is that the connection lines are routed with a constant gradient (at least 2 %), and that the bottom edges on the solar panels with double-sided connections are mounted with a constant gradient to the return connection, or, with same side connection, are mounted horizontally.

Mode of operation

The EKSV21P, EKSV26P and EKSH26P high-performance solar panels efficiently convert the sun’s radiation into heat. Hereby, the heat transport media is normal tap water.

As soon as the solar collectors have reached a useful temperature level, the water of the heating jacket in the storage cylinder (which is not under pressure) is pumped directly through the collectors. With insufficient collector temperature, the circulation pump is switched off and the system is drained automatically. This operating mode has several advantages:

- High operational reliability, as there are no components that could be damaged or fail (such as expansion vessel, safety valve, venting valves, etc.).
- Excellent heat transfer and heat storage capacity (system works without antifreeze agents).
- Minimum maintenance requirements.
- Frost proof.
- Without separate solar heat exchanger.
- No stagnation problems.

Modular design

The system consists of several preassembled modules. Plug-in technology and a high degree of pre-assembly ensure fast and simple system installation.

Storage tank

The following storage tanks can be used for the Daikin solar system:

- Daikin EKHWP (HYC): Thermally insulated, de-pressurised plastic storage tank (with connection facility for a Daikin air-water heat pump).
- Daikin Altherma EHS(X/H) Solar storage tank with integrated interior air-water heat pump device.

Electronic control

The fully electronic Daikin Solar R4 control system ensures optimum utilisation of the solar heat (hot consumption water generation, heating support) as well as the observance of all safety-relevant aspects. All parameters needed for trouble-free operation have been preset at factory.

3.3 System components

3.3.1 Control and pump unit for solar systems EKSRPS4

Consists of:

1 Cover
2 Connection piping with solar operating pump
3 Daikin Solar R4-controller with storage tank temperature sensor, return flow temperature sensor, solar panel temperature sensor connecting cables, FlowSensor, 230 V mains connecting cable (3 m)
4 Accessories pocket (6 fixing screws, 2 plastic plugs, 2 locking screws, plug fitting and gasket)
5 Mounting material (retaining bracket for pump mounting, holding bar and fixing bracket for controller)
6 Solar documentation

Fig. 3-2 Control and pump unit for solar systems (EKSRPS4)
3 Product description

3.3.2 Filling and draining cock (KFE BA) for EKSRPS4

Fig. 3-3 KFE cock (optional)

3.3.3 Regulating valve FlowGuard FLG

For setting and display of flow rate of 2 - 16 l/min.
Consists of:
- FlowGuard FLG (a).
- 2x seals (b).

Fig. 3-4 FlowGuard FLG (optional)

3.3.4 Storage tank extension kit CON SX

For connecting 2 EKHWP storage tanks.
Consists of:
- Return connection line (a).
- Flow distribution line (b).

Fig. 3-5 CON SX (optional)

3.3.5 Storage tank extension kit 2 CON SXE

Extension kit for connecting an additional EKHWP storage tank.
Consists of:
- Return connection line (a).
- Flow distribution line (b).

Fig. 3-6 CON SXE (optional)
4 Installation

4.1 System concepts

Daikin solar systems are usually built according to one of the following system concepts. Information concerning hydraulic system incorporation with example schematics can be seen in chapter 8 "Hydraulic system connection".

4.1.1 Parallel connection

As an alternative to the parallel mode described in this manual, and if necessary, a maximum of 3 solar panels can be mounted one above the other. Solar panels or solar panel fields mounted one above the other must be connected in series (fig. 4-3).

4.2 Installing the control and pump unit

WARNING!

Live parts can cause an electric shock on contact and cause life-threatening burns and injuries.

- Before beginning work on the boiler switching panel or the solar controller, disconnect the devices from the power supply (switch off fuse, main switch) and secure against unintentional restart.
- Electrical installations must always be carried out by qualified electrical technicians in conformity with the relevant electrical guidelines and the regulations of the electric utilities company to prevent hazards from damaged electric wiring.
- Comply with the relevant safety at work regulations.

DANGER!

Leaking gas in the immediate proximity of electrical components can cause an explosion.

- The Control and pump unit for solar systems EKSRPS4 and electrical components should not be installed in locations where there is a danger of flammable gas escaping.
- Pay attention to minimum distances from walls and in shafts.
4.2.1 Installation pump unit

CAUTION!
Large volumes of water may come out of the solar storage tank during installation.
- Mount the pump unit before filling the solar storage tank (depressurised range) with water.
- If the pump unit is to be connected to solar storage tank that is already in operation, the depressurised storage area must first be drained.

11. Adapt the return line (VA 18 Solar) accordingly and route separately after separating the twin thermal insulation.

12. Insert the pre-curved return line (VA 18 Solar) into the plug fitting on the pump outlet pipe.

13. Cut the flow line (VA Solar 15) to length on the storage tank side and insert into the plug fitting on the solar flow connection (see chapter 4.3 “Linking several solar storage tanks”, FlowSensor, work step 4).
In the case of longer pipe runs with only a minimum gradient, it is possible for water pockets to develop due to thermal expansion of the plastic pipes between the mounting points with siphon action:
- Use support troughs (TS).
- Always make sure that pipe runs have a continuous gradient of at least 2%.

4.2.2 Installation FlowSensor, FlowGuard (optional)

FlowSensor
The FlowSensor FLS 20 (fig. 4-17) is a measuring device that simultaneously determines the flow rate in the solar panel and the flow temperature. The measuring ranges are 0...20 l/min (flow quantity) and 0...120°C (inflow temperature). The measured values are displayed on the Solar R4 control system.

By controlling the speed of the PS solar circulation pump, the Solar R4 automatically adjusts the optimum flow quantity.

1. Insert the seal (b) on the solar flow connection (a) of the hot water storage tank.
2. Screw the FlowSensor (c) onto the solar flow connection (a) of the hot water storage tank.
3. Insert the seal (e) and fit the plug fitting (f) to the inlet to the FlowSensor (c).
4. Shorten the flow line (g) (Ø 15 mm) to the required length and insert into the plug fitting (f).
5. Lay FlowSensor cable between FlowSensor (c) and Solar R4 control unit.
6. Connect FlowSensor cable to FlowSensor (c) and to the Solar R4 control system printed circuit board edge at position FLS (4-pin, see fig. 4-23).

FlowGuard
The FlowGuard FLG (fig. 4-19) is also available as an accessory. It is a regulating valve with integrated flow indicator which can be used to set the flow rate through the solar panel array.

The display range is 2...16 l/min.

1. Insert the seal in the flow connection (see fig. 4-18).
2. Mount the FlowGuard, and screw it tight.
3. Insert the seal and install the plug fitting into the input to the FlowGuard.
4. Insert a prepared flow pipe into the plug fitting of the FlowGuard.
4 Installation

4.2.3 Installing temperature sensor

CAUTION!
On no account may the storage cylinder temperature sensor of the boiler controller be inserted more than 75 cm into the sensor well. A sensor that is inserted too deeply can lead to overheating of the consumption water section, as well as a “hang-up” of the control unit during the storage cylinder charging phase.

1. Bend over the contact springs on both sensors (return temperature sensor, storage tank temperature sensor) and insert into the sensor tube.

2. Position the return flow temperature sensor in the sensor tube at approx. 130 cm insertion depth (cable tie).

3. Position the storage cylinder temperature sensor in the sensor tube at approx. 70 cm insertion depth (cable tie).

4. Push the sealing plug into the well, and run the cables.

4.2.4 Preparing and fitting the control system

Requirements
- For electrical connections and consumable electrical materials (cable, insulation, etc.), follow all valid country-specific guidelines.
- For every fixed mains connection, use a separate EN 60335-1 disconnector for all-pole disconnection from the power mains and a GFCI circuit breaker with a reaction time ≤ 0.2 s.

Permissible cable types at the terminal strip:
- Single core $\leq 2.5 \text{ mm}^2$
- Multi-core $\leq 2.5 \text{ mm}^2$
- Multi-core with wire end sleeves with insulating collar $\leq 1.5 \text{ mm}^2$
- Multi-core with wire end sleeves without insulating collar $\leq 2.5 \text{ mm}^2$
1. Fix the cable supplied to the back of the control system using the edge connectors. The connectors are polarised to prevent errors. A connecting diagram is provided in the control unit cover.

2. To ensure reliable tension relief, all cables should be run through the respective labyrinths.

3. Connect the solar panel temperature sensor line (integrated in the connection line) to the plug terminals.

4. Insert the plug at the edge of the board on the controller, at position TK (2-pin, see fig. 4-23).
4 Installation

5. Suspend the controller from above in the fixing bracket.
 – Make sure that the cable loops (as shown in fig. 4-27 and fig. 4-28) point downwards.

6. Cabling of the solar operating pump PS:
 – Connect the pump cable to the solar operating pump PS.

7. Lay the cable for the control system along the return line and fix using cable ties.

4.2.5 Fit the covering hood

1. Slide the covering hood in position and align. Slide the covering hood under the controller housing so that a constant gap is produced round the controller.

2. Screw the covering hood to the controller housing on both sides using countersunk head screws.

3. Fix the covering hood to the storage tank connection bracket that is located underneath. Carefully screw the self-tapping fixing screw (pre-installed in the covering hood) over the depression in the lower section of the housing front and then insert the covering cap.
4.3 Linking several solar storage tanks

The Daikin-storage tank extension is a system of connecting lines and permits parallel linking of several hot water storage tanks for use in the Daikin solar system.

The CON SX Solar storage tank extension kit can be used to connect 2 hot water storage tanks for use in solar systems for each EKSRPS4 Control and pump unit for solar systems (fig. 4-35). It is possible to connect up to a maximum of 3 hot water storage tanks to one storage battery (Solar tank extension kit 2 for a third CON SXE hot water storage tank).

The optional Daikin FlowGuard FLG ensures that the connected hot water storage tanks are filled equally. One FlowGuard should be installed per hot water storage tank. The FlowSensor is installed in the common flow (fig. 4-34).

Operating principle

– The solar return is taken from the solar zone of the linked hot water storage tanks via the return connection line (fig. 4-35, item 5).
– The common return is pumped to the solar panel array by the Control and pump unit for solar systems EKSRPS4 (fig. 4-35, item 4).
– The water is heated in the solar panel array and is directed, as the solar flow, to the hot water storage tank via the flow distribution line (fig. 4-35, item 6).

Installation of storage tank extension for 2 hot water storage tanks

WARNING!

Danger of scalding by releasing the connection lines from the storage tank or when working on the hydraulics on the Control and pump unit for solar systems (e.g. when changing a pump).

● Empty the storage tank (de-pressurised area) before working on the connecting line or the hydraulics.

CAUTION!

Large volumes of water may come out of the solar storage tank during installation.

● Mount the storage tank extension kit before filling the hot water storage tank (depressurised range) with water.

● If the solar system is to be connected to solar storage tank that is already in operation, the depressurised storage area must first be drained.

1. Mounting the Control and pump unit for solar systems EKSRPS4 without fitting the hood (see section 4.2).
2. Unscrew the covering cap on the solar return connection from the second solar storage tank.
4 Installation

3. Aligning the solar storage tank. The centre-to-centre distance between the storage cylinders must be 830 mm. Note also the recommended wall distance of 200 mm.

4. Preparation of the storage tank connection bracket (on the Control and pump unit for solar systems EKSRPS4).
 - Remove the holding bar on the extension side and remove the ball valve or blind plug, depending on the existing structure.
 - Adjusting the desired operating position:
 - X2: storage tank extension on the right-hand side, fig. 4-38.
 - X4: storage tank extension on the left-hand side, fig. 4-40.
 - X1: without storage tank extension, fig. 4-42 (standard ex works)

5. Mount the removed plug on the return connection line pre-installed by Daikin on the second storage tank connection bracket.

6. Insert the return line, completed in this way, in the free outlet of the storage tank connection elbow of the Control and pump unit for solar systems EKSRPS4 using the free plug fitting (Ø 28).

7. Fix the return line to the return connection of the second hot water storage tank.

8. Remove the lower covering lid on the relevant side from the covering hood.

9. Fit the covering hood to the hot water storage tank (see chapter 4.2.5).

10. Fit a FlowGuard (optional) to the solar flow connections on the storage tank (see chapter 4.2.2).

11. Fit the flow distribution lines left and right to the connection T-piece (fig. 4-43, item 3 + 4).

12. Place gaskets on both FlowGuards and screw the flow distribution line to the two FlowGuards using union nuts.
13. Position seal on the connecting t-piece and screw on the double swivel nut (1").

14. Position seal in double swivel nut (1").

15. Mounting the FlowSensor (see chapter 4.2.2).

Fig. 4-43 Assembly of the storage tank extension kit for 2 solar storage tanks (shown here using 2 Sanicube Solar, model shown exemplified)

When extending the system to a maximum of three storage tanks, please refer to the installation manual for the CON SXE storage tank extension kit 2.
5 Start-up and decommissioning

5.1 Start-up

WARNING!
The solar system cannot be started until all hydraulic and electrical connections have been completed.
Incorrect commissioning will impair the system’s function, and can lead to damage to the entire installation. Installation and start-up must therefore must conducted by Daikin-authorised and trained heating experts.

The protective conductor resistance and correct wiring must be checked before start-up.

CAUTION!
Commissioning in frosty conditions can result in damage to the entire heating system.
- Commissioning at outdoor temperatures below ⁰C only with a guaranteed water temperature of at least ⁵C in the solar circuit (e.g. prior heating of the hot water storage tank).
Daikin recommends that you avoid operating the system in extremely frosty conditions.

CAUTION!
If filling or topping up the storage tank is done by means of the boiler filling and drain valve, a temporary filling loop must be used with the appropriate backflow prevention device in accordance with clause G24.2, Guidance to the Water Supply (Water Fittings) Regulations 1999.

All the following work must be carried out in the specified sequence.

1. Filling the storage cylinder:
 - Filling the heat exchanger for domestic water.
 - Domestic hot water quality must be according to EU directive 98/83 EC and country-specified regulations.
 - Fill the buffer storage volume via the filling and draining cock (KFE BA) on the EKSRPS4 Control and pump unit for solar systems until water comes out of the safety overflow.
 - Close the filling and draining cock (KFE BA).

2. Switch on the solar R4 control system.
 ➔ The initialisation phase starts.

3. When the initialisation phase is finished (temperature display), fill and vent the solar system by simultaneously pressing both arrow keys (starting manual mode).
 ➔ The solar operating pump Pₛ now runs at full power and the solar system is exposed to the maximum possible operating pressure. The solar system fills, the air escapes through the flow line into the air compartment of the storage tank.

4. Check the entire system for leaky joints (in the building and on the roof). Seal any leaks that occur in a professional manner.

5. Switch off the solar R4 control system.

6. Check the filling level in the hot water storage tank.

 ➔ Within a few minutes after switching off and emptying of the solar system, the fill level indicator in the hot water storage tank once again reach almost to the fill level.
 - The reason for a slightly lower fill level is the remaining of a small volume of water in the lower collection pipes in the panels. If the solar panels are correctly aligned, this volume of water is not dangerous for the panel, even under the effects of frost, since there is adequate space for expansion.
 - If the fill level remains considerably below the fill level, this can be an indication of undiscovered leaks or faulty line routing (water pockets). In this case you must undertake a very careful check of the system again.

7. Adjusting the filling time:
 - Switch the Solar R4 control unit on again (initialisation phase starts).
 - When the initialising phase is finished (temperature display), you can start the manual operating mode by simultaneously pressing both arrow keys.
 - Measure the time it takes to fill the solar system completely. The system is fully filled when you can no longer hear any air noises and a steady value for the flow rate is displayed (activate the measuring point "Flow rate" using the arrow keys).
 - Set the measured time plus 20 s at the parameter "Time P₂" (see section 6.3.6).

8. Switch the Solar R4 control unit back to automatic operation either by simultaneously pressing both arrow keys or by switching the unit off/on.
 ➔ The solar system is now ready for operation.

 ➔ The correct flow rate in the solar circuit is set automatically by regulating the speed of the solar operation pump Pₛ.

9. Only when connecting a Control and pump unit for solar systems EKSRPS4 to several solar storage tanks:
 - The entire flow rate, measured with the FlowSensor in the solar flow line, must be distributed evenly to all the connected solar storage tanks. We recommend using a Flow-Guard (FLG) at each storage tank for regulation purposes.

10. Instruct the user, fill out the acceptance report, and send it to the address indicated on the rear cover of this manual.
5.2 Decommissioning

5.2.1 Temporary shutdown

CAUTION!
A heating system which is shut down can freeze in the event of frost and may suffer damage.
- Drain the heating system that is shut down if there is danger of frost.

CAUTION!
Pumps that remain switched off for an extended period can seize up.
With temporarily shut-down solar systems, the protection function from seized pumps (pump kick function) is also deactivated.
- Check for correct pump function when re-starting.
Seized pumps can normally be released again manually.

Draining the storage tank
- Separate all power circuits of the solar and heating system from the power supply and secure against inadvertent switching on again.
- Connect the drain hose to the filling and draining cock (KFE BA) (fig. 5-1, item A) and to a waste water drainage point which is at least at ground level.

Draining the storage tank
- Insert the KFE filling connection (KFE BA) into the connecting angle and secure using a retaining clamp (fig. 5-3).

Fig. 5-1 Connecting the drainage hose
- Adjust the valve insert on the connecting angle so that the path to the blind plug is blocked off (fig. 5-2).
- Remove the blanking plug from the connecting angle (fig. 5-2) and place a suitable collection trough beneath the unit.

Fig. 5-2 Shutting off the valve insert and removing the blanking plug from the connecting angle
- Open the combined filling and draining valve on the KFE filling connection (KFE BA).
- Adjust the valve insert on the connecting angle so that the flow to the drain hose is opened (also refer to fig. 5-2) and drain the water content of the storage tank.
5 Start-up and decommissioning

5.2.2 Final shutdown

- Take the Daikin solar system out of service (see chapter 5.2.1 "Temporary shutdown").
- Control and pump unit for solar systems EKSRPS4 disconnected from all electrical and water connections.
- Dismantle the Control and pump unit for solar systems EKSRPS4 in accordance with the instruction manual (chapter 4 "Installation") in reverse order.
- Control and pump unit for solar systems EKSRPS4 disposed off in a professional manner.

Recommendations for disposal

Thanks to the environmentally friendly design of the solar system, Daikin has complied with requirements for environmentally sound disposal. During the disposal process, the only waste created is that which can be used for material or thermal recycling.

The materials used that are suitable for recycling can be sorted into individual types.

The designation of the product means that electrical and electronic products may not be disposed of together with unsorted domestic waste.

Proper disposal in compliance with the respective national regulations of the country of use is the responsibility of the user/owner.

- Disassembly of the system, handling of coolant, oil and other parts may only be carried out by a qualified fitter.
- Disposal may only be carried out by an organization that specialises in reuse, recycling and recovery.

Further information is available from the installation company or the responsible local authorities.
6 Control unit

6.1 Operating and display components

1 Main switch with indicator light
2 Display of temperature and parameter display (energy saving function: Display illumination is switched off 10 minutes after the last key actuation)
3 Light for collector temperature display
4 Light for solar flow temperature and flow measurement (FLS)
5 Light for storage cylinder temperature display
6 Light for solar return flow temperature display
7 Operating status light for speed-controlled solar operating pump P_S (lights up when pump running - flickers if the pump is running in a restricted condition)
8 Up arrow for moving the temperature or parameter display up by one setting/increasing parameter settings
9 Down arrow for moving the temperature or parameter display down by one setting/decreasing parameter settings
10 Information key for accessing the information level (displays measured values, maximum values and calculated values) and OK key for confirming and storing settings in the setting menu
11 Controller housing
12 Locking screws for device housing (back)
13 Type plate

Unit may only be opened by an authorised technician. Remove the plug before opening!

Fig. 6-1 Operating and display elements

6.2 Operating mode of control system

The Solar R4 controller has been equipped with an update function in order to ensure continual improvements for the optimum use of the solar system. Therefore, some functions described in this chapter are applicable to specific software versions only. These functions are indicated separately by symbols.

Software updates to the Solar R4 controller system must be done by Daikin service technicians only.

The power switch completely disconnects the Solar R4 control systems from the mains voltage. Switching of the mains switch takes more effort in pushing the button than is required for actuating the operating buttons.

6.2.1 Pump operation

The solar system is operated fully-automatically all year round without the need for manual intervention. Speed-controlled pump operation is regulated by the Solar R4 controller. The operating and display elements are shown in fig. 6-1.

Criterion for actuation:
- Pump operation depends on the continuously measured temperature difference between the solar panel (T_K) and the return flow temperature (T_R) and a comparison with the set value of the parameter "Delta T on". The solar operating pump P_S switches on if the temperature difference $(T_K - T_R)$ exceeds the value set in the parameter "Delta T on" (e.g. return temperature = 40°C and "Delta T on" = 15 K; solar panel temperature > 55°C).

Criteria for switching off:
- The solar operating pump P_S switches off if the temperature difference falls below the value set in the parameter "Delta T off".
 1. Possibility: Normal switch-off if the "Filling time" (parameter "Time P2") has expired and the temperature difference between the flow and return temperatures achieves the switch-off condition ($T_V - T_K$ = "Delta T off").
 2. Possibility: Rapid switch-off if the solar panel cools off too quickly within the "Filling time" (parameter "time P2") ($T_K - T_R$ = "Delta T off").
6 Control unit

6.2.2 Booster function for high solar panel temperatures

From a solar panel temperature of \(T_{K_{\text{max}}} = 70^\circ \text{C} \) (booster temperature), the output of the solar operating pump \(P_S \) is increased in steps.

- This increases the system pressure as well as the flow quantity, which enables more heat to be stored within a shorter time.

The booster temperature can be changed by the heating expert using the parameter \(T_{K_{\text{max}}} \). This increase in output is switched off again automatically if the booster temperature falls by 5 K.

6.2.3 Start optimisation

Start optimisation prevents too frequent cycling and reduces the power consumption. This is a self-inhibiting function (activated in the factory).

The switch-on condition (see section 6.2.1) is supplemented by a variable constituent (VAR):

\[\text{DT on} + \text{VAR} = T_K - T_{R} \]

With the function activated, the current spread \(T_V - T_{R} \) is assessed after the filling time (parameter "Time P2"). The existing value of VAR is updated based on this measurement. Three cases must be differentiated:

- If the spread is above the top limit \(OG_{VAR} \), VAR is reduced by the step size \(\Delta VAR \).

 - The next filling thus starts at a lower temperature difference \(T_K - T_{R} \).

- If the spread is below the bottom limit \(UG_{VAR} \), VAR is increased by the step size \(\Delta VAR \).

 - The next filling thus starts at a higher temperature difference \(T_K - T_{R} \).

- If the spread is between the threshold values, the current value of VAR is retained.

6.2.4 Switch-on block functions

The switch-on block functions prevent:

- switching on again if, because of reaching the set maximum storage tank temperature \(T_{S_{\text{max}}} \) the solar system has been automatically switched off (\(T_S \) light flashes).

- pump operation with activated "intensified frost protection function" (star symbol flashes in the display - see section 6.2.11).

- Pump operation, if the solar panel temperature exceeds the adjustable value set by the heating expert by parameter \(T_{K_{zul}} \) (\(T_K \) indicator flashes).

After switching off the solar operating pump \(P_S \) as a result of the maximum storage tank temperature, continuing impingement of the sun's rays on the solar panel can cause temperatures of over 100°C. If the storage tank temperature falls below the release temperature \((T_{S_{\text{max}}} - 2 \text{ K}) \), (e.g. by the removal of hot water), the solar operating pump \(P_S \) is only switched on again if the temperature at the solar panel falls below the value set with the parameter \(T_{K_{perm}} \) of the set restart protection temperature by 2 K.

The function blocking time ensures that the solar operating pump \(P_S \) is only released again, after the occurrence of a switch-off condition, after expiry of the blocking time (0 - 600 secs.) set in the parameter "Time SP".

This means:

- the cycling of the solar panel can be minimised.

- the solar panel can achieve a higher temperature.

- when filling the solar system, the flow temperature does not fall below the switch-off condition and the system regulates itself more quickly.

6.2.5 Pump kick function

During extended shut-down periods, the solar operating pump \(P_S \) is activated for a few seconds every 24 hours.

This prevents the solar operating pump from seizing up.
6.2.6 Manual operation

Exclusively for commissioning and test purposes, the system can be switched on manually for the time period saved in the parameter "H/A". All the regulation functions are switched off and the solar operating pump Pₜ runs continuously, independent of the system temperatures, at the set output stage.

- Pressing (>1 s) both arrow keys simultaneously activates or deactivates manual operation.

CAUTION!

Uncontrolled manual operation can lead to heat loss, excessively high storage tank temperatures and, under certain cold situations, even to frost damage.

The manual mode cannot be activated with active "enhanced frost protection function" (star symbol in display flashing - see section 6.2.10).

6.2.7 FlowSensor

The FlowSensor (FLS) serves to measure the flow rate "V" and the flow temperature "Tᵥ".

With the sensor connected and working:
- the measurement values "V" and "Tᵥ" are displayed.
- the controller operates after the filling process with the real spread Tᵥ - TR.

If the system has detected the FlowSensor once, the display shows an error message if a sensor is faulty or is disconnected (see chapter 7.1 "Display of events"). The system then works in the emergency mode without the FlowSensor.

If the controller detects a FlowSensor after a new installation or a technician reset, the value "20" is set automatically in the parameter "FLS active".

The correct parameter value for the FlowSensor fitted to the system must always be checked and adjusted if necessary (see tab. 6-1). The Flow Sensor can be disabled by input of the parameter value "0".

If the heating expert deactivates the FlowSensor, then no fault signal will appear. The control system now operates without the measured value for the flow. The feed temperature "Tᵥ" is set to be equal to the solar panel temperature "TK".

<table>
<thead>
<tr>
<th>FlowSensor type</th>
<th>Parameter value "FLS active"</th>
<th>Minimum flow Start phase "V1" in l/min</th>
<th>Minimum flow Operating phase "V2" in l/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>As required</td>
<td>0</td>
<td>FLS deactivated - no flow rate</td>
<td></td>
</tr>
<tr>
<td>FLS 12 (on request)</td>
<td>12</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>FLS 20 (included in scope of supply)</td>
<td>20*</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>FLS 40 (on request)</td>
<td>40</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>FLS 100 (on request)</td>
<td>100</td>
<td>10.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>

*automatically set value with detected FlowSensor

6.2.8 Output calculation, maximum values, and yield count

The balancing and calculation of the system operating data (e.g. solar heat yield) does not replace a calibrated thermal energy meter. These values may not be used for invoicing heating costs or similar legally valid accounting purposes.

If a FlowSensor is connected, the system operating data is calculated and balanced, such as the current heat output and the solar heat yield. The maximum and calculated values can be called up on the display (see chap. 6.3). Values greater than "0" that have not been deleted will continue to be displayed even after removal or deactivation of the FlowSensors (without further updates).
6 Control unit

6.2.9 Speed regulation of the solar operating pump \(P_S \)

After reaching the switch-on conditions, the Solar R4 controller activates:

- the actuation of the solar operating pump \(P_S \) at full output for filling the solar system. This takes place dependent on the set parameter value "Time P2" in [secs].

 \(\rightarrow \) If the correctly adjusted FlowSensor detects a steady flow before this time has expired, the solar system is completely filled with water.

- the actuation of the solar operating pump \(P_S \) at full output up to possible maximum flow rate of the system.

- the stepless output reduction of the solar operating pump \(P_S \) until the calculated target spread "DT" maintains the set value in accordance with fig. 6-2, or until the flow rate falls below the minimum flow rate \(V_2 \) (fig. 6-3 and tab. 6-1).

- the stepless increase in output of the solar operating pump \(P_S \) after a safety period "t2" (fig. 6-3).

If the pump output is too low, the flow in the solar circuit can collapse as a result of system and temperature influences. If the flow rate falls below the value "\(V_2 \)" (fig. 6-3 and tab. 6-1), the controller detects a flow rate breakaway, the last valid output stage is saved as the minimum pump output value. Lower pump output stages are automatically blocked.

The temperature-dependent output regulation of the solar operating pump \(P_S \) then takes place between the determined minimum and maximum outputs. The spread of "\(T_V \)" and "\(T_R \)" (=\(T_V - T_R \)) is measured continuously and compared with the target spread "DT". If the temperature spread between "\(T_V \)" and "\(T_R \)" is too great, the pump output (max. 10 stages) and thus also the flow rate through the solar panel is increased until the target spread is achieved. If the spread is too small, the pump output is reduced (fig. 6-2). The current pump output is displayed during its active running time in the operating display "Throughput", next to the throughput measured value in percent. A typical operating sequence of a modulating solar system is shown in fig. 6-3.

Fig. 6-2 Pump output control as a function of temperature difference

\(DT \) Target spread (calculated for the operating point)

\(P_S \) Solar operating pump

\(S1 \) Top target spread ("Spread 1")

\(S2 \) Bottom target spread ("Spread 2")

\(T_R \) Collector temperature

\(T1 \) Frost protection temperature ("\(T_{frost} \)"

\(T2 \) Booster temperature ("\(T_{K\ max} \)"

\(T3 \) Restart protection temperature ("\(T_{K\ perm} \)"

- Target spread

 - Switching limits for pump modulation
 - Pump output is increased
 - Pump output is reduced

Fig. 6-3 Example for modulation operation with flow-caused block of low pump stages on systems with FlowSensor

6.2.10 Total Reset Function

Controller is switched off and back on again:
- automatically blocked pump stages are released again.
- the system is automatically regulated again.
- manually blocked pump stages (see chapter 6.3.8) remain blocked.

A total reset deletes all individual settings and the event memory is deleted. All calculated values (info parameters) are set to zero.

If this total reset function is triggered via the menu path, the total thermal yield remains. This value is also deleted using the quick access via the button combinations.

The device reacts to a total reset with a new start (self-test), all parameters are reset to the factory settings and then all the blocked pump output stages are released. The reset takes place:

- Via menu path: Activation by heating expert in the "System" setting menu.
- By quick access: Simultaneous pushing of the OK and arrow keys.
6.2.11 Frost protection function

As soon as the solar panel temperature \(T_K \) falls below \(T_{frost} \) (factory determined frost protection temperature), the frost protection function is activated. It remains activated for 24 h after the limit temperature has been exceeded.

While frost protection is active a star icon is shown in the standard temperature display.

![Operating display with active frost protection](image)

The solar system only starts up with active frost protection if the switch-on condition is fulfilled and the solar panel temperature \(T_K \) exceeds the value \(T_{save} \) (factory setting 70°C). The solar operating pump \(P_S \), after switching on, runs at least for the time defined in the parameter \(T_{P2} \), even if the switch-off temperature condition is reached before that.

If necessary, (e.g. for long connecting lines outdoors), this minimum start run time can be extended by the heating expert by an adjustable time \(T_{frost} \). This prevents the build-up of ice in the connecting pipe.

The status of the frost protection function \("F.R active" \) shows whether the function is activated or deactivated (fig. 6-7). The heating expert can switch the function on and off manually.

The position of the solar panel temperature sensor can be adjusted in the parameter \("TKpos" \).

For optimising the frost protection, the solar panels must be installed with the sensor position "Bottom".

The parameter \("TKpos" \) must be set to the actual mounting position of the solar panel temperature sensor (see section 6.3.7).

Enhanced frost protection function

As soon as the Solaris R4 controller detects a solar panel temperature \(T_K \) under -5°C (non usable parameter \(T_{frost off} \)), the enhanced frost protection function becomes active. This completely blocks the pump operation - also in manual mode.

The function remains active for another 24 hours after exceeding this threshold temperature.

The enhanced frost protection function is indicated by a flashing star symbol on the display of the Solaris R4 controller. The function cannot be switched off manually.

6.2.12 Leak protection function

If, after switching on the solar operating pump \(P_S \) and expiry of the filling time \("Time P2" \), a minimum flow start phase \("V1" \) in accordance with tab. 6-1 is not detected at the FlowSensor, then there may be:

- a defect of the FlowSensor, or
- a leak in the solar system.

In order to prevent the entire buffer water volume from being pumped out of the system, the solar operating pump \(P_S \) is switched off for 2 hours, and the error message "W" flashes in the left-hand column on the display.

If this fault occurs 3 times in a row, without reaching the minimum flow rate start phase "V1" in the interim, the solar operating pump \(P_S \) switches off long-term and the error message "F" appears in the left-hand column on the display.

- Replace the defective FlowSensor or repair the leak.
- Delete the error messages by "Switching OFF/ON" on the main switch.

The system is then ready for operation again.

6.3 Adjustment and menu guide

Tab. 6-2 shows an overview of the available measuring points and the associated display formats. Tab. 6-3 summarises the views of the calculated parameters.

<table>
<thead>
<tr>
<th>Measuring point</th>
<th>Designation Display</th>
<th>Measuring range</th>
<th>Resolution</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_K)</td>
<td>Collector temperature</td>
<td>-30 to 250°C</td>
<td>1 K</td>
<td>Pt 1000 temperature sensor</td>
</tr>
<tr>
<td>(T_R)</td>
<td>Return flow temperature</td>
<td>0 to 100°C</td>
<td>1 K</td>
<td>PTC temperature sensor</td>
</tr>
<tr>
<td>(T_S)</td>
<td>Storage cylinder temperature</td>
<td>0 to 100°C</td>
<td>1 K</td>
<td>PTC temperature sensor</td>
</tr>
<tr>
<td>(T_V)</td>
<td>Flow temperature</td>
<td>0 to 100°C</td>
<td>1 K</td>
<td>FlowSensor (all types) with voltage output 0.5 to 3.5 V</td>
</tr>
<tr>
<td>(V)</td>
<td>Flow</td>
<td>0.0 to 12.0 l/min</td>
<td>0.1 l/min</td>
<td>FlowSensor FLS 12 with voltage output 0.36 to 3.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 20.0 l/min</td>
<td></td>
<td>FlowSensor FLS 20 with voltage output 0.36 to 3.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 40.0 l/min</td>
<td></td>
<td>FlowSensor FLS 40 with voltage output 0.36 to 3.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 100.0 l/min</td>
<td></td>
<td>FlowSensor FLS 100 with voltage output 0.36 to 3.5 V</td>
</tr>
</tbody>
</table>

Tab. 6-2 Overview of measurement points
6 Control unit

6.3.1 Display during start-up

After switch-on, the Solar R4 control unit goes through a self-testing routine, during which all the display elements and the adjustment parameters are shown separately. The following testing steps are carried out, and the results displayed for about 2 seconds (fig. 6-5):

- Immediately after switching on, the start display appears which shows the installed software version and the serial number of the device.
- During initial commissioning, the desired display language is queried.
- After this, the current parameter settings which the user can change are displayed.
- When the operating display appears, the self test is complete.
- The functions of the solar operating pump PS and their operating status lights can only be tested manually, for safety reasons (see section 6.2.6).

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation</th>
<th>Value range</th>
<th>Resolution</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>K</sub> max</td>
<td>Max. measured collector temperature</td>
<td>-30 to 250°C</td>
<td>1 K</td>
<td>-</td>
</tr>
<tr>
<td>T<sub>K</sub> min</td>
<td>Min. measured collector temperature</td>
<td>-30 to 250°C</td>
<td>1 K</td>
<td>-</td>
</tr>
<tr>
<td>V max</td>
<td>Maximum flow rate</td>
<td>0.0 to 12.0 l/min</td>
<td>0.1 l/min</td>
<td>Maximum flow measured during filling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 20.0 l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 40.0 l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 to 100.0 l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Peak output</td>
<td>0.0 to 99.9 kW</td>
<td>0.1 kW</td>
<td>Maximum value from 5 min output average</td>
</tr>
<tr>
<td>PS (15h)</td>
<td>Peak value of the day</td>
<td>0.0 to 99.9 kW</td>
<td>0.1 kW</td>
<td>Maximum value of the peak output within the last 15 hours</td>
</tr>
<tr>
<td>W (15h)</td>
<td>Daily thermal yield</td>
<td>0.0 to 9999.9 kW</td>
<td>0.1 kW</td>
<td>Thermal yield within the last 15 hours</td>
</tr>
<tr>
<td>W</td>
<td>Total thermal yield</td>
<td>0.0 to 9999.9 kWh</td>
<td>0.1 kWh</td>
<td>Total solar thermal yield determined from the momentary output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 10.000 to 99.999 MWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Momentary output</td>
<td>0.0 to 99.9 kW</td>
<td>0.1 kW</td>
<td>Mean value during the last minute</td>
</tr>
<tr>
<td>DT</td>
<td>Target spread</td>
<td>1 to 15 K</td>
<td>1 K</td>
<td>Nominal temperature difference T<sub>V</sub>–T<sub>R</sub> at modulation operation (calculated)</td>
</tr>
<tr>
<td>P1</td>
<td>Output stage in normal mode</td>
<td>0 to 100 %</td>
<td>1 %</td>
<td>-</td>
</tr>
<tr>
<td>Min. stage</td>
<td>Smallest released output stage P1</td>
<td>1 to 10</td>
<td>1; 1 %</td>
<td>Only accessible for an expert (see fig. 6-7)</td>
</tr>
<tr>
<td>Min. stage</td>
<td>Running time for the solar operating pump PS</td>
<td>0 to 99999 h</td>
<td>1 h</td>
<td>Only accessible for an expert (see fig. 6-7)</td>
</tr>
<tr>
<td>VAR</td>
<td>Variable step width for optimised switch-on condition</td>
<td>0 to 10</td>
<td>1 K</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 6-3 Info parameter (maximum values and calculated values)

![Switch on main switch, all lights on (apart from pump pilot lights)](image)

Fig. 6-5 Display during start-up
6.3.2 Display during operation

During operation, the display shows the system temperatures, maximum values, and calculated values. After the start display, the Solar R4 control system is automatically in operating display mode, an operating value is displayed and the associated indicator lights up.

- You can navigate between the four temperature measured values and the flow measured value (see tab. 6-2 and tab. 6-6) by pushing the arrow keys.
- Pressing the Info key displays the maximum values and the calculated values (see tab. 6-3).

The left-hand column of the display serves as a status display:
- “1” in the first line, solar operating pump P_S normal operation active.
- “2” in the 2nd line, solar operating pump P_S active with maximum output (booster).
- “B” in the 3rd line, burner block contact active (see section 6.3.10) or a fault status (see chapter 7.2 "Troubleshooting").
- “H” in the 4th line, manual operating mode.

So long as no manual adjustments are made or an event corresponding to tab. 7-2 produces a different display, the actuated measured value or information display remains active. It is activated again, even after parameter changes or "Switching OFF-ON". If info parameters are displayed, a measuring point check light is not activated.

6.3.3 Setup menu

The parameters of the Solar R4 control systems are displayed and modified in this menu.

- Press once (>2 s) on the OK push button to open the menu or to return to the operating display. Briefly pressing the key confirms a selection, opens the next menu item, or displays “Saved” for about 1 second after a value has been changed.
- In the required parameter display press OK to open parameter change mode.

In the menu (fig. 6-7) the active menu path is displayed in the first line, a cursor (“>”) in the left column indicates the next lower menu path or a parameter. From here, you navigate to the respective menu tree by means of the arrow keys: up (+ key) or down (– key).

The adjusted value can be changed accordingly with the arrow keys. Briefly pressing an arrow key changes the value by one step, and continuous pressing speeds up the change.

If the desired parameter has been changed and the entire parameter list has been scrolled down, you will arrive back to the selection menu "Selection 2/2", and from there into the operating display (see fig. 6-7). The control unit starts working with the changed parameter value(s) immediately. The display always returns to the operating display mode after 10 minutes, provided that no key is pressed during this time.

Fig. 6-6 Display during operation

6 Control unit

Fig. 6-7 Setup menu
6.3.4 Password input

The technician area of the settings menu is protected by a password, which is entered when opening the settings menu. Also the Operator level can be protected. The user level and the expert level are shown in different colours in fig. 6-7.

Alternative quick access to the setting menu:
After switching the controller on, during the start display, long push on the up arrow key (+).

As long as the system is being operated manually, no further password entry is required. Passwords remain valid for about 10 minutes after the last key has been pressed. After entering the password for the required level, the following display appears for about 2 seconds:
- “User OK”
- “Technician OK” or
- “Password incorrect”.

User password

This password does not come activated in the Solar R4 control unit from the factory. By entering a 4-digit number code, all the parameters adjustable in Operator level are protected against unauthorised access (child protection or caretaker function).

The parameters of the user level can only ever be changed with deactivated or valid user password.

A user password can be activated and changed or reassigned in the following menu path: “Selection 1/2” -> “Functions” -> “Change passw.” (see fig. 6-7):

- Enter old password into “current 0000” and new into “new 0000”. Hereby, every digit must be confirmed with the OK key.
- For a new password, enter the new password in “current 0000” and also in “new 0000”.

If the user password is activated, the menu path “Selection 1/2” only shows “Password 0000”. The operator password is enabled only after 10 minutes or after a restart of the Solar R4 control unit.

Technician password

The password is entered in the menu path: “Selection 1/2” under “Password 0000”. It activates all important systems parameters in the settings menu for technicians (see fig. 6-7).

6.3.5 Language selection

During initial commissioning, or after a total reset, the display (fig. 6-5) is retained during the start and a language choice is requested.

- Select a language with arrow keys and confirm with OK.

It is possible to select a different language later on via the menu item: “Selection 1/2” -> “Functions” -> “Change language” to select a different language (see fig. 6-7):

Alternative quick access to the language selection:
Simultaneous pushing of the OK key and the up arrow key (+).

6.3.6 Setting and resetting parameters

Setting the parameters is in accordance with fig. 6-7. All adjustable parameters are shown with access level, adjustment range and factory setting in the tab. 6-5. In the menu path: “Selection 1/2” -> “Parameter selection” -> “Reset” the maximum values and calculated values (see tab. 6-5) can be reset. Hereby, the selected max. value is set to zero immediately with the OK key. The arrow key “Down” cancels this operation, and the cursor goes back to the left. The OK key confirms the selection. Press the down arrow key repeatedly to open “Selection 2/2”. Confirm “back” to the operating display.

Using the menu path: “Selection 2/2” -> “System” -> “Reset” can trigger the total reset function. The system is then restarted (see also section 6.2.10).

A total reset deletes all individual settings and the event memory is deleted. All calculated values (info parameters) are set to zero.

If this total reset function is triggered via the menu path, the total thermal yield remains. This value is also deleted using the quick access via the button combinations.

6.3.7 Setting the mounting position of the solar panel temperature sensor

CAUTION!

Considerable steam generation when switching on again can cause damage to the solar system.

- If the solar panel sensor for DrainBack systems has been mounted at the bottom of the solar panel, in accordance with the installation instructions, the parameter “TKpos” must always be changed over to “↓” (see fig. 6-8).

Fig. 6-8 Setting parameter “TKpos” at mounting position solar panel “bottom”

If the solar panel temperature sensor has been mounted at the top on existing solar systems, the factory setting “↑” of the parameter “TKpos” need not be changed.
6 Control unit

6.3.8 Manual setting of the pump speed regulation

With certain output stages of the speed-regulated solar operating pump P_S noise problems can sometimes arise. The current output of the selected stage is displayed in the bottom line “Flow rate” in the operating display (see fig. 6-6) as a percentage.

- Make a note of the problematic output stage.
- Using the menu path: "Selection 2/2" -> "System" -> "Modulation" navigate to the "Stage" (see fig. 6-7).

Here, up to 10 speed ranges can be disabled. Next to the reference number of the output stage (starting with 01 for the lowest output) and the operating status, the output of the relevant stage is displayed as a percentage under "Output".

- Noise-intensive stages should be set to "No" in the parameter "Active".

PECIAL: The stage is skipped when the solar operating pump P_S is activated. The block remains, even after *Switching OFF/ON the controller. It can be cancelled again by setting the parameter "active" to "yes" or by the total reset function.

6.3.9 Correction values for measuring points

If the measured value of a sensor deviates from the real value, it can be adjusted using a correction value.

- Using the menu path: "Selection 2/2" -> "System" -> "Correction values" select the correction parameter (see fig. 6-7) and change in accordance with tab. 6-4.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Measurement & adjusting range</th>
<th>Factory value</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Return flow temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Storage cylinder temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Inflow temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Flow correction</td>
<td>-2 to +2</td>
<td>0 l/min</td>
<td>0.1 l/min</td>
</tr>
</tbody>
</table>

These settings are only accessible after entering the expert password.

Using the parameter "Time VBSK", it is possible to set a delay in the switching time for the burner blocking contact. The burner blocking contact only switches after expiry of the set delay time when the minimum storage tank temperature $T_S \text{ min}$ is exceeded or if the set minimum momentary output for burner stop $P \text{ min}$ is exceeded (example see fig. 6-9).

In the following example (fig. 6-9) we show a fictional sequence of the storage tank temperature.

At time t_1 the minimum burner stop temperature, defined in the operating parameter $T_S \text{ min}$, is exceeded for the first time. Since the storage tank temperature T_S shortly afterwards falls back below this value, this does not lead to activation of the burner blocking contact.

Since the storage tank temperature T_S is constantly exceeded at time t_2, this leads to activation of the burner blocking contact, with the delay "VBSK" at time t_3. In a similar way, the burner blocking contact is only deactivated at time t_6.

Using the parameter "Time VBSK", it is possible to set a delay in the switching time for the burner blocking contact. The burner blocking contact only switches after expiry of the set delay time when the minimum storage tank temperature $T_S \text{ min}$ is exceeded or if the set minimum momentary output for burner stop $P \text{ min}$ is exceeded (example see fig. 6-9).

In the following example (fig. 6-9) we show a fictional sequence of the storage tank temperature.

At time t_1 the minimum burner stop temperature, defined in the operating parameter $T_S \text{ min}$, is exceeded for the first time. Since the storage tank temperature T_S shortly afterwards falls back below this value, this does not lead to activation of the burner blocking contact.

Since the storage tank temperature T_S is constantly exceeded at time t_2, this leads to activation of the burner blocking contact, with the delay "VBSK" at time t_3. In a similar way, the burner blocking contact is only deactivated at time t_6.

These settings are only accessible after entering the expert password.

Tab. 6-4 Correcting values

<table>
<thead>
<tr>
<th>Designation</th>
<th>Measurement & adjusting range</th>
<th>Factory value</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Return flow temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Storage cylinder temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Inflow temperature correction</td>
<td>-9 to +9</td>
<td>0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Flow correction</td>
<td>-2 to +2</td>
<td>0 l/min</td>
<td>0.1 l/min</td>
</tr>
</tbody>
</table>

0 Not active
1 Active
t Time
$t_1...t_6$ Discrete times
BSK Burner inhibit contact
T_S Storage tank temperature
$T_S \text{ min}$ Minimum temperature for burner stop
$VBSK$ Delay burner inhibit contact

Fig. 6-9 For example: Function of the delay time when initiating the burner blocking contact
6.4 Recommended settings

6.4.1 Standard parameter settings, recommended setting ranges

The following table summarises the factory settings and the possible and recommended setting ranges of the Solar R4 control system parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation</th>
<th>Access level</th>
<th>Setting range</th>
<th>Recommended setting range</th>
<th>Factory setting</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK<sub>pos</sub></td>
<td>Solar panel</td>
<td>Specialist</td>
<td>↑↓</td>
<td>Real mounting position</td>
<td>↑</td>
<td>—</td>
</tr>
<tr>
<td>Delta T on auto</td>
<td>Activation of start optimisation with variable switch-on condition</td>
<td>Off / On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>—</td>
</tr>
<tr>
<td>Delta T On</td>
<td>Switch-on temperature difference</td>
<td>Operator</td>
<td>1...80 (“Delta off”)</td>
<td>10 to 15 kW</td>
<td>15 K</td>
<td>15 K</td>
</tr>
<tr>
<td>Delta T Off</td>
<td>Switch-off temperature difference</td>
<td>Operator</td>
<td>1...20 (“Delta on”)</td>
<td>2 to 5 kW</td>
<td>2 K</td>
<td>1 K</td>
</tr>
<tr>
<td>TS max</td>
<td>Maximum storage tank temperature</td>
<td>Operator</td>
<td>20 to 85°C</td>
<td>75 to 85°C</td>
<td>80°C</td>
<td>1 K</td>
</tr>
<tr>
<td>Time P2</td>
<td>Minimum run time of the solar operating pump P<sub>S</sub> at maximum output</td>
<td>Operator</td>
<td>10 to 999 kW</td>
<td>Filling time +20 s</td>
<td>150 s</td>
<td>1 s</td>
</tr>
<tr>
<td>Time Sp</td>
<td>Blocking time solar operating pump P<sub>S</sub></td>
<td>Specialist</td>
<td>0 to 600 s</td>
<td>—</td>
<td>30 s</td>
<td>1 s</td>
</tr>
<tr>
<td>TK max</td>
<td>Booster temperature (maximum solar panel temperature)</td>
<td>Operator</td>
<td>20 to 110°C</td>
<td>—</td>
<td>75°C</td>
<td>1 K</td>
</tr>
<tr>
<td>TK perm</td>
<td>Restart protection temperature (max. permissible operating solar panel temp.)</td>
<td>Operator</td>
<td>90 to 250°C</td>
<td>—</td>
<td>95°C</td>
<td>1 K</td>
</tr>
<tr>
<td>TR min</td>
<td>Minimum return temperature</td>
<td>Operator</td>
<td>10 to 60°C</td>
<td>—</td>
<td>25°C</td>
<td>1 K</td>
</tr>
<tr>
<td>T frost</td>
<td>Threshold solar panel temperature for activation of the frost protection function</td>
<td>Operator</td>
<td>0 to 10°C</td>
<td>—</td>
<td>0°C</td>
<td>1 K</td>
</tr>
<tr>
<td>TK save</td>
<td>Minimum solar panel temperature for release of pump operation with active frost protection function</td>
<td>Operator</td>
<td>50 to 80°C</td>
<td>—</td>
<td>70°C</td>
<td>1 K</td>
</tr>
<tr>
<td>Time Frost</td>
<td>Additional start run time of the solar operating pump P<sub>S</sub> with active frost protection function</td>
<td>Specialist</td>
<td>0 to 600 s</td>
<td>—</td>
<td>0 s</td>
<td>1 s</td>
</tr>
<tr>
<td>FR active</td>
<td>Status frost protection function</td>
<td>Yes/No</td>
<td>automatic</td>
<td>No</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H/A</td>
<td>Automatic resetting from manual to automatic mode</td>
<td>1 to 900 min</td>
<td>30 min</td>
<td>1 min</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>FLS enabled</td>
<td>FlowSensor activation</td>
<td>12 to 100</td>
<td>With FLS: 20</td>
<td>FLS 12: 12</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>P min</td>
<td>Min. output for burner stop</td>
<td>0,0 to 99.9 kW</td>
<td>—</td>
<td>99.9 kW</td>
<td>0.1 kW</td>
<td>—</td>
</tr>
<tr>
<td>TS min</td>
<td>Minimum storage tank temperature for burner stop</td>
<td>0 to 99°C</td>
<td>—</td>
<td>99°C</td>
<td>1 K</td>
<td>—</td>
</tr>
<tr>
<td>Time VBSK</td>
<td>Delay burner blocking contact</td>
<td>10 to 600 s</td>
<td>—</td>
<td>120 s</td>
<td>10 s</td>
<td>—</td>
</tr>
<tr>
<td>T frost off</td>
<td>Threshold temperature for activation of the enhanced frost protection function for solar panels</td>
<td>—</td>
<td>—</td>
<td>-5°C</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AUTORESET% P</td>
<td>Release blocked pump stages every 24 hours</td>
<td>Yes/No</td>
<td>—</td>
<td>No</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Tab. 6-5 Overview of parameters
6 Control unit

During commissioning, the system parameters must be adjusted individually to suit the installed system, and might need fine tuning during subsequent operation. Usually, the system will operate with the default settings.

The following instructions help with determining the setting values and guarantee optimum thermal yield with low power consumption:

- Set the cut-in temperature difference "Delta T on" so the system remains operating after start-up under even solar radiation conditions and does not shut down immediately the solar panels cool down after removing heat. The lower this value can be adjusted, the longer will be the operating periods with a correspondingly higher heat yield. If the switch-on temperature is too low, the solar panel already cools so much during filling that the switch-off temperature difference is not achieved.
 ➔ The pumps are switched off immediately, with resulting lower heat yield and higher power consumption.

- Adjust the switch-off temperature difference "Delta T Off" so that the heat yield obtainable at the switch-off point is higher than the electrical power required to drive the pump.
 ➔ Since the power consumption of the solar operating pump P_S is virtually independent of the size of the connected solar panel array, but the thermal power that can be exploited is directly dependent on the number of solar panels, the parameter value on a few solar panels is set higher, but with multiple solar panels it is set lower.

- The run time "Time P2" for maximum output of the solar operating pump P_S to be set so that, in all cases, the total cross-section of the flow line is filled with water. Determine the time from the detection of air noises from switching on the solar operating pump P_S to entry into the storage tank and add a safety factor of 20 secs. The filling period depends on the adjusted flowrate, the number of collectors, system height, and the length of the connecting pipe.

- The max. storage cylinder temperature "TS max" is adjusted according to individual requirements. The higher the value of the parameter, the higher will be the available heat storage capacity, and thus the output potential of the Daikin solar system.

WARNING!

Temperatures in excess of 60°C can arise in the solar storage tank.
- Fitting scald protection.
 - Protection against scalding VTA32
 - Verschraubungs-Set 1*

System switch-on involving steam generation can often be disconcerting for the operator. In order to prevent boiling noises and steam exit, the restart protection temperature "TK perm" is set in the factory. The Solar R4 control unit only switches the P_S Solar circulation pump on again when the collector temperature has fallen 2 Kelvin below the adjusted parameter value. The system operates without forming steam in the solar panels. However, on a cloudless day, this can lead to a situation where the system only switches on again in the late afternoon, although the storage cylinder temperature permits additional heating.

- In order to maximise energy input, set the "parameter restart protection temperature" to a value greater than 100°C and thus deactivate the restart protection function.
 In this case the system operator should be advised of audible bubbling noises and steam knocking during filling.

6.4.2 Additional settings for your solar system

The following setting instructions apply only to basic setting with fitted FlowGuard:

- Activate manual mode.
- After filling the system completely, set the water flow rate so that each solar panel is transited at 90 to 120 l/h. Influence the flow rate either by setting the speed stage at the solar operating pump P_S or/and by setting the FlowGuard (regulating valve with flow indication). Reference values for correct valve and pump stage settings are listed in tab. 6-6.
- Once the settings have been changed, switch off the Solar R4 control unit.

Tab. 6-6 Setting the flow rate on the FlowGuard (FLG)

<table>
<thead>
<tr>
<th>Number of solar panels</th>
<th>Nominal flow in l/min</th>
<th>Desired flow in l/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.0 to 4.0</td>
<td>180 to 240</td>
</tr>
<tr>
<td>3</td>
<td>4.5 to 6.0</td>
<td>270 to 360</td>
</tr>
<tr>
<td>4</td>
<td>6.0 to 8.0</td>
<td>360 to 480</td>
</tr>
<tr>
<td>5</td>
<td>7.5 to 10.0</td>
<td>450 to 600</td>
</tr>
</tbody>
</table>

For rapid safe filling of the system, always set the solar operating pump P_S to a high speed stage, if the system height H, as the height difference between the solar storage tank installation floor level and the top of the solar panel does not exceed 10 m (in stage 2) or 8 m (stage 1) and an adequate flow rate is achieved.

Even if the flow volume is set correctly, the cut-in temperature difference "Delta T on" and good weather conditions will occasionally shut down the solar system. With a rising or setting sun, and an increasing storage cylinder temperature, the collector temperature gradually falls after the pumps have been switched on, i.e. the switch-off conditions are met. The continuing solar radiation will increase the temperature of the solar panels, the pumps will operate and the system will cycle because the solar radiation is no longer sufficient for continuous operation. The FlowSensor reduces this effect by pump speed regulation.
6.4.3 Setting recommendation for the post-heating via external heat sources or by the electrical immersion heater, burner blocking contact

For the highest performance potential:
- Heat the solar storage tank only infrequently and then only to a just adequate temperature via the external heat source or electrical immersion heater.
- Restrict charging times via the timer programmes:
 a) Determine the optimum times for "normal use" by regular consumption habits.
 b) Enable supplementary heating for 1/2 to 2 hours before usual usage time depending on the external source.
- The charging time should be limited so that the storage cylinder does not need to be directly heated after a normal consumption cycle.

6.4.4 Tips for optimised user behaviour

Hot water needs and user behaviour are highly individual. The higher the desired storage cylinder temperature is, and the longer the periods for non-solar charging heating have been adjusted, the more will the storage potential for solar heat generation be limited. Careful consumption behaviour, adapted to the particular strengths of the solar system minimises the energy consumption for non-solar charging processes.

- Set the hot water target temperature so that there is adequate hot water for drawing off (e.g. for one shower) at the lowest possible setting value. This setting serves to ensure that the maximum heating of the hot water by the solar system with a specific volume of water being used.

6.4.5 Domestic water hygiene

If no hot water (25 l) is used for several days and the storage temperature of the does not reach at least 60°C, for hygiene reasons (Legionella protection) it is periodically heated up to above 60°C once.

- Use modern and efficient shower heads with draw-off rates of 5 to 7 l/min.
 - The lower draw-off rate (hot water consumption volume per minute) means a reduced requirement for supplementary heating and therefore more hot water at a higher temperature.
- Reduce the consumption times.
 - Lower energy consumption.
- Only use hot water to begin with when filling a bath.
 - After the domestic water stored in the solar storage tank has been drawn off, the hot water outlet temperature drops slightly and the water is mixed in the bath. In this way, the storage capacity is used in an optimal manner with a minimum charging temperature; an adequate amount of hot water is available.
7 Faults and malfunctions

7.1 Display of events

<table>
<thead>
<tr>
<th>Event code</th>
<th>Plain text display</th>
<th>Description</th>
<th>Status display (flashing)</th>
<th>Lamp (flashing)</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Collector</td>
<td>Collector sensor: Short-circuited or open</td>
<td>K</td>
<td>TK</td>
<td>Long-term switch-off of (P_S)</td>
</tr>
<tr>
<td>1</td>
<td>Return flow</td>
<td>Return flow sensor: Short-circuited or open</td>
<td>R</td>
<td>TR</td>
<td>(\psi) Restart, all parameter settings and info parameters remain, automatically blocked pump output stages are released again.</td>
</tr>
<tr>
<td>2</td>
<td>Storage cylinder</td>
<td>Storage cylinder sensor: Short-circuited or open</td>
<td>S</td>
<td>TS</td>
<td>(\psi) Restart in accordance with Code 202.</td>
</tr>
<tr>
<td>3</td>
<td>Flow rate</td>
<td>FlowSensor: Short-circuited or open</td>
<td>D</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>4</td>
<td>Inflow</td>
<td>FlowSensor: Short-circuited or open</td>
<td>V</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>5</td>
<td>A/D</td>
<td>Internal A/D converter fault</td>
<td>G</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>6</td>
<td>Supply</td>
<td>Internal equipment fault of the supply voltage</td>
<td>G</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>7</td>
<td>Reference</td>
<td>Internal equipment fault of the reference voltage</td>
<td>G</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>8</td>
<td>Reset</td>
<td>Overall reset was carried out</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>9</td>
<td>Start flow</td>
<td>Minimum flow rate (V_1) (see tab. 6-1) not achieved in the start phase after expiry of "Time P2" (description see chapter 6.2.1 and 6.2.12)</td>
<td>W</td>
<td>TV</td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>10</td>
<td>TS > T \text{max}</td>
<td>Storage tank maximum temperature ("TS max") exceeded (description see chapter 6.2.1 and 7.2)</td>
<td>TR</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>11</td>
<td>TR >> TS</td>
<td>(T_R - T_S > 10 \text{ K}) and (T_R > 40)°C (description see chapter 7.2)</td>
<td>TK</td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>12</td>
<td>TK > TK \text{perm}</td>
<td>Permitted solar panel maximum temperature ("TK perm") exceeded (description see chapter 6.2.1 and 7.2)</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>13</td>
<td>Interrupt</td>
<td>Flow breakaway during operating phase detected ((V < V_2), see chapter 6.2.9 and tab. 6-1)</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>14</td>
<td>P-on</td>
<td>Switching on</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>15</td>
<td>Brown-out</td>
<td>Reset caused by prohibited reduction in the mains voltage</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
<tr>
<td>16</td>
<td>Watchdog</td>
<td>Reset caused by external interference influences (e.g. over-voltages caused by thunderstorms)</td>
<td></td>
<td></td>
<td>Operation without FlowSensor</td>
</tr>
</tbody>
</table>

| Tab. 7-1 Event storage |

Using the menu path: "Selection 2/2" -> "System" -> "Event memory" and, after entering the technician password (see section 6.3.4 and fig. 6-7), any events that occur during operation can be displayed. For this purpose, the Solar R4 control unit contains a simple fault diagnosis system. The events memory stores nature and time of the event. The event is displayed in clear text and using a code, the time since the start of the event is displayed in hours. Starting with the most recent event, you can leaf through the individual events by means of the Info key. If the parameter "delete" is shown in the menu item: "Selection 2/2" -> "System" -> "Event memory" is set to "yes", all events are deleted. Deletion of individual events is not possible. An overview of possible entries in the event memory is given in tab. 7-1.
7 Faults and malfunctions

Sensor-specific error messages
With a break or short circuit in a sensor or sensor cable, the Solar R4 control unit reacts as follows (see tab. 7-2):
- A flashing code letter in the display indicates the fault in the status column and a message appears.
- The lamp associated with the fault flashes.
- In addition, the control unit automatically intervenes in system operation.

All other sensor values remain accessible via the arrow keys.

Sensor-specific error messages

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Cause of the fault</th>
<th>Status (blinks)</th>
<th>Display</th>
<th>Lamp (flashing)</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector temp.</td>
<td>Interruption</td>
<td>K</td>
<td>uuuu</td>
<td>TK</td>
<td>Long-term switch-off of PS</td>
</tr>
<tr>
<td></td>
<td>Short circuit</td>
<td></td>
<td></td>
<td>TK</td>
<td></td>
</tr>
<tr>
<td>Return flow temp.</td>
<td>Interruption</td>
<td>R</td>
<td>uuuu</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short circuit</td>
<td></td>
<td></td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Storage cylinder temp.</td>
<td>Interruption</td>
<td>S</td>
<td>uuuu</td>
<td>TS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short circuit</td>
<td></td>
<td></td>
<td>TS</td>
<td></td>
</tr>
<tr>
<td>Inflow temp.</td>
<td>Voltage drop</td>
<td>V</td>
<td></td>
<td>without lamp</td>
<td></td>
</tr>
<tr>
<td>FlowSensor</td>
<td>Voltage drop</td>
<td>D</td>
<td></td>
<td>without lamp</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7-2 Sensor fault table

7.2 Troubleshooting

Operating events similar to faults
The storage tank temperature "TS" in the solar storage tank reaches the value set in the parameter "TS max":
- Pumps are switched off, the system is drained. The TS lamp in the Solar R4 control unit flashes; the display shows the measured tank temperature. As soon as the storage cylinder temperature falls more than 2 K, normal system operation is resumed.

Hereby, short-term evaporation in the collectors is possible. The pressureless steam escapes into the storage cylinder. On rare occasions, small volumes of water vapour come out of the solar storage tank for short periods.

The temperature in the solar panel is higher than the restarting protection temperature "TK perm":
- Pumps are switched off. The TK light flashes on the Solar R4 control unit. If the set switch-on inhibit temperature falls by more than 2 K, normal system operation is enabled automatically.

Failures

WARNING!
Live parts can cause an electric shock on contact and cause life-threatening burns and injuries.
- Electrical installations must always be carried out by qualified electrical technicians in conformity with the relevant electrical guidelines and the regulations of the electric utilities company to prevent hazards from damaged electric wiring.
- Rectification of damage to live components of the Control and pump unit for solar systems EKSRS4 must only be carried out by heating engineers authorised and recognised by the energy supply company.
- Before beginning the repair work, disconnect the Control and pump unit for solar systems EKSRS4 from the power supply (fuse, shut off main switch) and secure against unintentional restart.
- Comply with the relevant safety at work regulations.

CAUTION!
Danger of burning on hot surfaces.
- Let the device cool down for a reasonably long time before maintenance and inspection work.
- Wear protective gloves.

The TR light flashes on the Solar R4 controller. Return temperature "TR" is greater than 40 °C and is 10 K higher than the storage temperature "TS". The solar operating pump PS is switched off. The cause is a defective or incorrectly connected sensor.
- Install the sensor correctly or replace it; normal system operation will be resumed.
7 Faults and malfunctions

"W" flashes in the Solar R4 controller status line. The minimum flow rate start phase "V1" at the FlowSensor (see page 23, tab. 6-1) is not achieved after switching on the solar operating pump PS and after expiry of the time defined by the parameter "Time P2" (fig. 6-3).

- The system goes to temporary blocking for 2 hours (solar operating pump PS is switched off), but still tries to restart automatically after the blocking time.
- If this event occurs three times in a row, without intermediate starting, the solar operating pump PS is switched off for an extended period and the status "F" is set.

"F" flashes in the Solar R4 controller status line. The minimum flow rate start phase "V1" at the FlowSensor (see page 23, tab. 6-1) is not achieved after switching on the solar operating pump PS and after expiry of the time defined by the parameter "Time P2" (fig. 6-3). The solar operating pump PS is switched off.

- If a leak is suspected, examine the solar system, rectify faults and then release the block by "Switching OFF/ON" on the controller.

If the system cannot be filled (status "F"), even though the solar operating pump PS is actuated by the controller, the following faults can be the cause:

1. Air drawn down when the system was running idle is in the solar operating pump PS.
 - Check that the solar operating pump PS is running. The automatic vent must always be working! Check the sealing cap and loosen it if necessary (do not remove).

2. Check the installation for leaks.
 - Check the installation for leaks and rectify if necessary. Follow instructions in chapter 5 "Start-up and decommissioning".

3. The start run time "Time P2" (chap. 6.4).

4. Check the installation for blockages. In the event of frost, ice plugs can be formed in poorly routed connection lines.

5. Check valve position on storage tank connection elbow.

If there is nothing showing on the display, and the main switch in the illuminated "On" position:

- Replace the control system (electronic fault).

If the main switch is not illuminated in the "On" position, there is no power supply to the control unit.

- Check the plug connection of the mains plug and the mains connection (fuse, switch).

If water vapour is coming out of the solar storage tank when the sun impinges on it, the flow rate is too low.

- In this case, the system settings must be checked.

Special notes on electric sensors

- Evaluate the display of the Solar R4 control unit.
- Remove casing of the Solar R4 controller and remove and disconnect the relevant sensors.
- Examine the contact positions of the affected sensors, and measure the resistance (or the DC voltage for flow temperature and flow rate sensors) on the sensor end. When the fault has been rectified, the system automatically resumes normal operation and is in the operating mode.

The resistance or DC voltage values of the sensors are listed in fig. 9-1 and in fig. 9-2. Internal faults in the controller electronics that can be diagnosed are displayed in the display in accordance with tab. 7-1 (status "G"). They also cause a safety switch-off of the pumps. "Switching OFF" and "Switching ON again" after waiting for 2 mins. either rectifies the fault or the controller needs to be replaced.

Only original Daikin replacement parts may be used.
WARNING!
Temperatures in excess of 60 °C can arise in the solar storage tank.
- Fitting scald protection.
 - Protection against scalding VTA32
 - Verschraubungs-Set 1"

CAUTION!
The Daikin units can also be optionally fitted with convection brakes made of plastic. They are suitable for maximum operating temperatures of 95 °C. If a heat exchanger is operated at temperatures greater than 95 °C, another gravity brake must be installed in the building.

A selection of diagrams of the most common installed systems is shown below. The arrangements shown are only examples, and are no substitute for careful system planning.

Fig. 8-1 Standard solar connection with Altherma EHS(X/H)

Fig. 8-2 Standard solar connection with air-water heat pump (Altherma Bi-Bloc with room heating and cooling function)\(^1\)

\(^1\) The displayed plant schematics do not claim to be complete and do not replace careful indoor planning.
8 Hydraulic system connection

If the structural conditions do not permit mounting the solar panels above the storage tank, or if the connecting line cannot be installed with a continuous gradient between the solar panel and the storage tank, you cannot use the depressurised Daikin solar system (DrainBack) and thus the Control and pump unit for solar systems EKSRPS4.

Instead, the heating system can be executed with the Daikin solar pressure system. The following solar components can be used equally in both systems:

- EKSV21P, EKSV26P and EKSH26P Solar high-efficiency flat solar panels
- Solar on-roof, in-roof and flat roof installation mounting kits
- Solar hot water storage tank

Other system components must only be used under system-specific conditions.

8.2 Connection of a pressure solar panel system

If the structural conditions do not permit mounting the solar panels above the storage tank, or if the connecting line cannot be installed with a continuous gradient between the solar panel and the storage tank, you cannot use the depressurised Daikin solar system (DrainBack) and thus the Control and pump unit for solar systems EKSRPS4.

Instead, the heating system can be executed with the Daikin solar pressure system. The following solar components can be used equally in both systems:

- EKSV21P, EKSV26P and EKSH26P Solar high-efficiency flat solar panels
- Solar on-roof, in-roof and flat roof installation mounting kits
- Solar hot water storage tank

Other system components must only be used under system-specific conditions.

<table>
<thead>
<tr>
<th>Short name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK</td>
<td>Solar panel field</td>
</tr>
<tr>
<td>SV</td>
<td>Safety over-pressure valve</td>
</tr>
<tr>
<td>t_AU</td>
<td>Rocon OT1 exterior temperature sensor</td>
</tr>
<tr>
<td>t_DHW</td>
<td>Storage tank temperature sensor (included in the scope of supply)</td>
</tr>
<tr>
<td>t_Mi</td>
<td>Mixer circuit flow temperature sensor</td>
</tr>
<tr>
<td>T_K</td>
<td>Solar collector temperature sensor</td>
</tr>
<tr>
<td>T_R</td>
<td>Solar return flow temperature sensor</td>
</tr>
<tr>
<td>T_S</td>
<td>Solar storage cylinder temp. sensor</td>
</tr>
<tr>
<td>T_V</td>
<td>Solar flow temperature sensor</td>
</tr>
<tr>
<td>V</td>
<td>Fan (vapouriser)</td>
</tr>
<tr>
<td>VS</td>
<td>Protection against scalding VTA32</td>
</tr>
<tr>
<td>Tab. 8-1 Short names in hydraulic drawings</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cold water distribution network</td>
</tr>
<tr>
<td>2</td>
<td>Hot water distribution network</td>
</tr>
<tr>
<td>3</td>
<td>Heating flow</td>
</tr>
<tr>
<td>4</td>
<td>Heating return flow</td>
</tr>
<tr>
<td>5</td>
<td>Mixing circuit</td>
</tr>
<tr>
<td>6</td>
<td>Circulation</td>
</tr>
<tr>
<td>7</td>
<td>Check valve, return valve</td>
</tr>
<tr>
<td>7a</td>
<td>Non return valves</td>
</tr>
<tr>
<td>8</td>
<td>Solar circuit</td>
</tr>
<tr>
<td>9</td>
<td>Gas pipe (coolant)</td>
</tr>
<tr>
<td>10</td>
<td>Fluid pipe (coolant)</td>
</tr>
<tr>
<td>11</td>
<td>Storage tank flow</td>
</tr>
<tr>
<td>12</td>
<td>Storage tank return flow</td>
</tr>
<tr>
<td>3UV1</td>
<td>3-way switch valve (DHW)</td>
</tr>
<tr>
<td>3UV2</td>
<td>3-way switch valve (cooling)</td>
</tr>
<tr>
<td>3UVB1</td>
<td>3-way switch valve (heating, internal circuit regulated)</td>
</tr>
<tr>
<td>3UV DW</td>
<td>3-way switch valve (DHW + heating support regulated)</td>
</tr>
<tr>
<td>BOyy</td>
<td>Electric immersion heater (Booster Heater)</td>
</tr>
<tr>
<td>BUxx</td>
<td>Electric immersion heater (Backup Heater)</td>
</tr>
<tr>
<td>BV</td>
<td>Bypass valve</td>
</tr>
<tr>
<td>C</td>
<td>Coolant compressor</td>
</tr>
<tr>
<td>CW</td>
<td>Cold water</td>
</tr>
<tr>
<td>DHW</td>
<td>Domestic hot water</td>
</tr>
<tr>
<td>E</td>
<td>Expansion valve</td>
</tr>
<tr>
<td>EKHWP</td>
<td>Daikin Energy storage</td>
</tr>
<tr>
<td>FLS</td>
<td>Flow sensor, FlowSensor FLS 20 or alternative type in accordance with tab. 6-1 (flow and feed temperature measurement)</td>
</tr>
<tr>
<td>FLG</td>
<td>FlowGuard regulating valve with flow indicator</td>
</tr>
<tr>
<td>H_1, H_2, ..., H_m</td>
<td>Heating circuits</td>
</tr>
<tr>
<td>HP-TR</td>
<td>Main regulator heat pump</td>
</tr>
<tr>
<td>EHS(X/H)</td>
<td>Daikin Altherma (solar storage tank with integrated heat pump unit)</td>
</tr>
<tr>
<td>MAG</td>
<td>Diaphragm expansion vessel</td>
</tr>
<tr>
<td>MIX</td>
<td>3-way-mixer with drive motor</td>
</tr>
<tr>
<td>MK1</td>
<td>Mixer group with high-efficiency pump</td>
</tr>
<tr>
<td>MK2</td>
<td>Mixer group with high-efficiency pump (PWM controlled)</td>
</tr>
<tr>
<td>P_Mi</td>
<td>Mixing circuit pump</td>
</tr>
<tr>
<td>P_S</td>
<td>Solar operating pump</td>
</tr>
<tr>
<td>P_z</td>
<td>Circulation pump</td>
</tr>
<tr>
<td>PWT</td>
<td>Panel heat exchanger (condenser)</td>
</tr>
<tr>
<td>RLB</td>
<td>Return temperature limiter</td>
</tr>
<tr>
<td>RoCon HP</td>
<td>Altherma EHS(X/H) control unit</td>
</tr>
<tr>
<td>RoCon M1</td>
<td>Mixer circuit control</td>
</tr>
<tr>
<td>EKSRPS4</td>
<td>Solar regulation and pump unit</td>
</tr>
<tr>
<td>EKHB</td>
<td>Indoor unit Altherma Bi-Bloc heat pump</td>
</tr>
<tr>
<td>ERHQ</td>
<td>Outdoor unit Altherma Bi-Bloc heat pump</td>
</tr>
<tr>
<td>ERLQ</td>
<td>Altherma EHS(X/H) outdoor unit</td>
</tr>
<tr>
<td>RT</td>
<td>Room thermostat</td>
</tr>
<tr>
<td>SAS1</td>
<td>Sludge and magnetic separator</td>
</tr>
</tbody>
</table>

Daikey EKSRPS4
Daike Control and pump unit for solar systems
008.1624644 – 08/2015
Operating and installation instructions
39
9 Technical data

9.1 EKSRPS4 control and pump unit

<table>
<thead>
<tr>
<th>Control and pump unit for solar systems EKSRPS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions H x W x D</td>
</tr>
<tr>
<td>Operating voltage</td>
</tr>
<tr>
<td>Solar operating pump</td>
</tr>
<tr>
<td>Maximum electrical power consumption EKSRPS4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solar R4 controller</td>
</tr>
<tr>
<td>Max. electric power consumption of the control unit</td>
</tr>
<tr>
<td>Solar panel temperature sensor</td>
</tr>
<tr>
<td>Storage cylinder and return flow temperature sensor</td>
</tr>
<tr>
<td>Feed temperature and flow sensor</td>
</tr>
</tbody>
</table>

Tab. 9-1 Technical data Control and pump unit for solar systems

9.2 Sensor characteristics

<table>
<thead>
<tr>
<th>Temperature sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar sensor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TR, TS</td>
</tr>
<tr>
<td>TK</td>
</tr>
</tbody>
</table>

| FlowSensor |
| TV | Sensor output voltage in V |
| | (0.5 - 3.5 V) | 0.5 | 0.80 | 1.10 | 1.40 | 1.70 | 2.00 | 2.30 | 2.60 | 2.90 | 3.20 | 3.50 |

Tab. 9-2 Sensor table of the solar sensors

![Fig. 9-1 Resistance characteristics of the solar sensors](image1)

![Fig. 9-2 Characteristic curves of the FlowSensor](image2)
9.3 Connection allocation EKSRPS4 controller

Fig. 9-3 Connection assignment

- BSK Burner inhibit contact
- CONF Programming socket for Software update
- F1 Fuse
- FLS FlowSensor
- n. B. not used
- P1 Solar operating pump
- Power Mains supply
- PWM external pump connection (PWM-signal)
- TS Storage cylinder temperature sensor
- TR Return flow temperature sensor
- TK Collector temperature sensor